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Abstract 

A theoretical analysis of the spontaneous self-destruction of chemical power sources (CPS) 
was carried out. A mathematical model of the process in the form of a nonlinear differential 
equation system was elaborated explaining the origin of the inner local heat source which 
can initiate the self-destruction process during storage. 

Introduction 

Highly energy-intensive chemical power sources (CPSs), such as lithium thio- 
nylchloride systems, are known to be subject to thermal destruction during storage 
[l]. Thermodynamic causes of this phenomenon have been analysed in refs. 1-3. In 
ref. 4, it has been shown that the self-destruction can be initiated by a local heat 
source. Some cases are known, however, in which the self-destruction proceeds without 
any external action, i.e., only due to internal causes. These causes are considered in 
the present work. 

A model of chemical power source (CPS) self-discharge 

It is assumed that CPS self-discharge during storage is not uniform in the whole 
cell, but proceeds at local regions, where the film of lithium has defects which provide 
access for an oxidizer. Such a region, together with a volume of electrolyte - limited 
within the pores of the separator, and in the corresponding regions of the cathode, 
anode and current collectors - can be represented as a local cell, connected in the 
circuit by its internal resistance in parallel to the main source (Fig. 1). 

At the point of the electrolyte contact a chemical reaction proceeds with the rate: 

= -k&C 
them 

(1) 

where C (mol/cm3) is the concentration of the oxidizer in the defect region, I’ (cm’) 
the volume of electrolyte in the pore, Sd (cm”) the area of contact of the electrolyte 
with lithium in the defect region, and k (cm s-l) the heterogeneous rate constant. 
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Fig. 1. A circuit with a local cell. 

The rate constant is exponentially dependent on the temperature: 

k,&-E&r 
(2) 

where E, (u 100 kJ/mol) is the activation energy of the chemical reaction. The case 
is possible, when the reaction rate depends on the diffusion of oxidizer. Then k,= 
Do/Id is the diffusion constant, where Do and 1, are the coefficient and length of 
difision path, respectively. As to the activation energy, it is smaller by a factor of 3 
to 4. 

Due to this reaction, the local cell in the defect region becomes more discharged 
in comparison with the main one. A current, I, arises charging the defect region: 

where AE=E,-Ed; K (Cl-’ cm-“) is the conductivity, and S is the area of the defect 
section which approximates to the section of the separator pore. 

E.m.f. decreases due to a decrease in the oxidizer concentration in the pore: 

where C, is the concentration of oxidizer in the initial charged cell. 
The rate of charge of the defect region: 

(4) 

The sum of eqns. (1) and (5) is a differential eqn. of the oxidizer mass balance with 
two variables - concentration and temperature. The conductivity of the cell, K, is 
also, in general, temperature-dependent, and this dependence should be similar to 
eqn. (2) if the migration of ions through the film at lithium determines the cell 
resistance. 

The second differential eqn. presents the heat balance of the local cell: 

W*=-W~+W~+WJ+WC (6) 

where W, is the heat for heating the local region, W, the latent heat of reaction 
(the Peltier heat); W, is the Joule heat, WC is the chemical reaction heat, and W, 
is the heat transferred from the defect region. 
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The heat for heating the region: 

WH=VCHp $f (7) 

where Cu is the average heat capacity and p the cell density. 
The heat transfer from the defect region is assumed, as usual, to be proportional 

to the difference in temperature: 

WHT= tL!?i( T- To) (8) 

where (Y is the effective coefficient of heat transfer, and Si the area of heat transfer. 
The latent heat of the reaction may be conveniently written as: 

Wn=TII=hEt&GSn (9 

where, 

l-I=Tg (10) 

is the Peltier coefficient (V), and U?/& the temperature coefficient of e.m.f. of the 
cell. We assume lJ> 0, if the heat is evolved during charge, which corresponds to 
cells with aEpT>O; the Joule heat: 

w, = (AE)ks (11) 

and the heat of the chemical reaction in the form: 

them 
(12) 

Substituting eqns. (7)-(12) into eqn. (6) and introducing dimensionless variables - 
concentration (the degree of charge): 

(13) 

and temperature: 

@= T-To T-T, -z- 
T To 

(14) 

we obtain the final model of CPS self-discharge through the defects in the form of 
a set of nonlinear differential equations: 

r&= - &fe-edk In t=P(& 0) 

~,b= -&-(p-d In ne*‘ln t+H&Ye=Q(& 0) (15) 

where, 

V 

“= koSd 
(16) 

and, 

VCHP 

ra= cvsi (17) 
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are constants with the dimensions of time; 

E 
EC E and ,zr= 3 

RTo RTo 

are the dimensionless activation energies of chemical reaction and conductivities (or 
internal resistance) of the cell, respectively: 

K= 
RTOSGI 

n2F2S C k d 00 

R=hl 
‘= dinF 

R’T~SK d= - 
n2F2cSi 

H= 
mko c,Sd 

&To 

(19) 

(20) 

(21) 

(22) 

are the dimensionless parameters, depending on the system properties. 

Conditions of CPS stability during storage 

Estimation of possible variation limits of the parameters from eqn. (15) using 
data on the properties of the Li/S02C12 system cells available in the literature [3, 5, 
6,7-151, gives the following orders of magnitudes: TV- Id-16 s; re- 0.01-l s; k - 0.1-100; 
p-d - 1O-2-1O-5; H- 10-2-10-4. Hence, rfw re, i.e., the time constant for variation 
of oxidizer concentration is much less than that for temperature variation. This allows 
the concentration to be considered as a ‘slow’ variable, and each of eqns. (15) can 
be analysed separately. Thus, analysing the equation of heat balance we can consider 
5; to be constant at any moment of time, whereas the heat exchange proceed under 
almost stationary conditions. 

Q(&, 0)=-0-@-d In &)e” In &+H,$e”=O (23) 

In this case, the analysis of the thermal stability of the local cell is similar to that 
used in the theory of heat explosion [5, 15-181, Fig. 2. The stationary condition at 
any moment of time, according to eqn. (23), follows from the condition of equality 
of the rate of heat transfer, presented in Fig. 2 by the line WI = 13, and heat evolution 
W2 which, in the model accepted, is equal to the sum of the two last terms from eqn. 
(23). In the general case, the system has three stationary states, of which only two 
are considered within the model accepted (due to the simplification in determining 
the dimensionless temperature, eqn. (14), the third - high-temperature stationa.ry 
state disappears). The ‘low-temperature’ equilibrium state 1 (Fig. 2) is a stationary 
one, and, if it exists, the local ‘defect’ cell will be stable for unlimitedly long period 
of time, provided that the degree of charge remains constant. In the model accepted, 
the presence of such stable local cells is the cause of the usual low self-discharge of 
a CPS during storage. 

Combinations of parameters are possible, however, at which, during storage, curve 
W, will gradually shift upwards. The stationary states 1 and 2 will converge and, at 
some critical value of & will disappear. This bifurcation will lead to the development 
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Fig. 2. Graphical representation of the critical situation under uncontrolled self-acceleration of 
an exothermal reaction. 

of local heat source and to catastrophic destruction of the cell. The condition of this 
is: 

Q2(&, &) > 0 (24) 

where 0, is determined from the equation: 

(25) 

The appearance of nonstability has been analysed for two limiting cases of eqn. (15): 
(i) the internal resistance of the cell decreases with increasing temperature in 

accordance with the same regularity as an increase in the rate of chemical interaction, 
i.e. E= en and 

(ii) the internal resistance of the cell is temperature-independent, l ,=O. From 
eqns. (24) and (25) functions are found, whose sign determines the cell stability for 
these two limiting cases: 

Fr=ee[iY&-(p-d In 5) In 51-l (26) 

Fz=ln e&t-&-d in 0 In 6 

At F <0 the local defect is stable, whereas at F<O unstable. 

(27) 

It is obvious that in a ‘fresh’ charged cell (E=l) the defect should be stable, 
because otherwise it fails immediately after its production. This is possible under the 
following condition: 

e&Ml (28) 

But even if eqn. (28) is satisfied, this does not guarantee stability of the cell during 
a long storage. 

The combination of parameters, at which the defect is stable (at some unchanged 
stationary & value) are determined from the inequality F(&) <0, where the value of 
tc is determined from the set of equations p(& t&)=0 (see eqns. (15) and (25)). For 
case (i), this inequality cannot be written in the explicit form, because kc should be 
found numerically from the transient equation &+k In &c=O. For case (ii) it has the 
form: 

kHln &+l- A +p+ --&-CO 
E (29) 
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As analysis shows, the two parameters K and H exert the greatest effect on the 
local cell stability. This can be represented by a rough diagram (Fig. 3), where the 
line represents the lefthand side of eqn. (29), when the last three terms are much 
less than 1 and, therefore, can be neglected. The form of the curve (Fig. 3) as well 
as the position and height of maximum depend, to a certain extent, on the value of 
p and d which display the contribution of the latent heat of reaction and the Joule 
heat, but the qualitative form of the diagram remains unchanged. The region of 
stationary stability is limited by the curve and the x-axis, whereas the shaded part of 
this region corresponds to an absolutely stable defect, where the condition of initial 
stability eqn. (28) holds true. With all other combinations of parameters the defect 
is unstable and, with time, can become a local heat source, capable of initiating thermal 
destruction of the cell as has been described in refs. 4 and 5. A possible development 
of the process is presented by Fig. 4, where numerical solutions of a set of differential 
eqn. (15) are given at a combination of parameters which does not fall in the stability 

-I e 

Fig. 3. A diagram of mutual influence of K and H on the stability of the local cell. 

6 

6 7 6 9.1 

Fig. 4. Variation of local temperature (curve a) and the degree of charge (curve b) of the defect 
in the approximation of exponential decrease in the internal resistance with temperature (curves 
1) and without dependence on temperature (curves 2) as well as variation of stability eqns. (26) 
and (27) in the critical region. The values of parameters: ~=40; H=0.003; D=O.O2; K=0.4; 
the ratio of time constants T~/T~= 100; dimensionless time r=tG. 
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region (Fig. 3). Calculations are presented for two limiting cases, corresponding to 
stability eqns. (26) and (27). 

In both cases, the system behaviour has pronounced ‘catastrophic’ character. After 
a fairly long induction period (the unit of dimensionless time in Fig. 4 corresponds 
to hours or tens of hours of real time) an abrupt increase in the temperature of the 
local cell proceeds. The ‘catastrophe’ occurs firstly for case (i), when the internal 
resistance decreases rapidly with increasing temperature. 

The theoretical study carried out allows some practical conclusions to be drawn. 
Firstly, to produce a stable source the condition of initial stability of eqn. (28) must 
be achieved. Consequently, the parameter, determined from eqn. (22), should be as 
small as possible. All parameters in eqn. (22), except for .!&, are rigidly prescribed 
either by physicochemical properties of the system or by standards for production and 
operation conditions. As to the area of the defect, where the contact of the oxidizer 
with lithium occurs (&), it depends, in the first place, on the presence of impurities 
in lithium, including mechanical ones. Therefore, the more pure the anode material 
is, the lesser is the probability of formation of the local source. Secondly, if the 
condition of eqn. (28) is satisfied, then, to get in the stationary stability region, Fig. 
3, the K constant, determined from eqn. (19) should be as large as possible. An 
increase in purity and the absence of mechanical impurities in lithium (a decrease in 
S,) also promote this. Besides, the conductivity of local elements, determined as the 
product of K and the area of the separator pore section, should be maximum. The 
probability of formation of the local heat source greatly increases if the distribution 
of pore sizes in the material of the separator is highly nonuniform and the local defect 
of the film at lithium falls in an anomalously narrow pore (small S). This probability 
also highly increases in the case of nonuniform electrolyte and the defect falls in a 
pore, where the concentration of the ionic compound is decreased (small K). 

Thus, the appearance of local heat sources, capable of initiating CPS destruction 
during storage, is less probable, the smaller the content of impurities (including 
mechanical ones) in lithium, the more uniform the pore sizes in the separator material 
and the more uniform the distribution of concentration of ionic compound (fluoroborate, 
lithium preparation, etc.) in the bulk separator. 
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